2,991 research outputs found

    DNA double helices for single molecule electronics

    Get PDF
    The combination of self-assembly and electronic properties as well as its true nanoscale dimensions make DNA a promising candidate for a building block of single molecule electronics. We argue that the intrinsic double helix conformation of the DNA strands provides a possibility to drive the electric current through the DNA by the perpendicular electric (gating) field. The transistor effect in the poly(G)-poly(C) synthetic DNA is demonstrated within a simple model approach. We put forward experimental setups to observe the predicted effect and discuss possible device applications of DNA. In particular, we propose a design of the single molecule analog of the Esaki diode.Comment: 4 pages, 4 figur

    Spin-dependent pump current and noise in an adiabatic quantum pump based on domain walls in a magnetic nanowire

    Full text link
    We study the pump current and noise properties in an adiabatically modulated magnetic nanowire with double domain walls (DW). The modulation is brought about by applying a slowly oscillating magnetic and electric fields with a controllable phase difference. The pumping mechanism resembles the case of the quantum dot pump with two-oscillating gates. The pump current, shot noise, and heat flow show peaks when the Fermi energy matches with the spin-split resonant levels localized between the DWs. The peak height of the pump current is an indicator for the lifetime of the spin-split quasistationary states between the DWs. For sharp DWs, the energy absorption from the oscillating fields results in side-band formations observable in the pump current. The pump noise carries information on the correlation properties between the nonequilibrium electrons and the quasi-holes created by the oscillating scatterer. The ratio between the pump shot noise and the heat flow serves as an indicator for quasi-particle correlation.Comment: 18 pages, 5 figure

    Noise properties of two single electron transistors coupled by a nanomechanical resonator

    Full text link
    We analyze the noise properties of two single electron transistors (SETs) coupled via a shared voltage gate consisting of a nanomechanical resonator. Working in the regime where the resonator can be treated as a classical system, we find that the SETs act on the resonator like two independent heat baths. The coupling to the resonator generates positive correlations in the currents flowing through each of the SETs as well as between the two currents. In the regime where the dynamics of the resonator is dominated by the back-action of the SETs, these positive correlations can lead to parametrically large enhancements of the low frequency current noise. These noise properties can be understood in terms of the effects on the SET currents of fluctuations in the state of a resonator in thermal equilibrium which persist for times of order the resonator damping time.Comment: Accepted for publication in Phys. Rev.

    Improvement of current-control induced by oxide crenel in very short field-effect-transistor

    Full text link
    A 2D quantum ballistic transport model based on the non-equilibrium Green's function formalism has been used to theoretically investigate the effects induced by an oxide crenel in a very short (7 nm) thin-film metal-oxide-semiconductor-field-effect-transistor. Our investigation shows that a well adjusted crenel permits an improvement of on-off current ratio Ion/Ioff of about 244% with no detrimental change in the drive current Ion. This remarkable result is explained by a nontrivial influence of crenel on conduction band-structure in thin-film. Therefore a well optimized crenel seems to be a good solution to have a much better control of short channel effects in transistor where the transport has a strong quantum behavior

    Magnetoconductance of the quantum spin Hall state

    Full text link
    We study numerically the edge magnetoconductance of a quantum spin Hall insulator in the presence of quenched nonmagnetic disorder. For a finite magnetic field B and disorder strength W on the order of the bulk gap E_g, the conductance deviates from its quantized value in a manner which appears to be linear in |B| at small B. The observed behavior is in qualitative agreement with the cusp-like features observed in recent magnetotransport measurements on HgTe quantum wells. We propose a dimensional crossover scenario as a function of W, in which for weak disorder W < E_g the edge liquid is analogous to a disordered spinless 1D quantum wire, while for strong disorder W > E_g, the disorder causes frequent virtual transitions to the 2D bulk, where the originally 1D edge electrons can undergo 2D diffusive motion and 2D antilocalization.Comment: 5 pages, 3 figure

    Low-Energy Conductivity of Single- and Double-Layer Graphene from the Uncertainty Principle

    Full text link
    The minimum conductivity value as well as the linear dependence of conductivity on the charge density near the Dirac point in single and doublelayer graphene is derived from the energy-time uncertainty principle applied to ballistic charge carriers

    Scattering of Dirac electrons by circular mass barriers: valley filter and resonant scattering

    Full text link
    The scattering of two-dimensional (2D) massless Dirac electrons is investigated in the presence of a random array of circular mass barriers. The inverse momentum relaxation time and the Hall factor are calculated and used to obtain parallel and perpendicular resistivity components within linear transport theory. We found a non zero perpendicular resistivity component which has opposite sign for electrons in the different K and K' valleys. This property can be used for valley filter purposes. The total cross-section for scattering on penetrable barriers exhibit resonances due to the presence of quasi-bound states in the barriers that show up as sharp gaps in the cross-section while for Schr\"{o}dinger electrons they appear as peaks.Comment: 10 pages, 11 figure

    Anomalous Josephson Current in Junctions with Spin-Polarizing Quantum Point Contacts

    Full text link
    We consider a ballistic Josephson junction with a quantum point contact in a two-dimensional electron gas with Rashba spin-orbit coupling. The point contact acts as a spin filter when embedded in a circuit with normal electrodes. We show that with an in-plane external magnetic field an anomalous supercurrent appears even for zero phase difference between the superconducting electrodes. In addition, the external field induces large critical current asymmetries between the two flow directions, leading to supercurrent rectifying effects.Comment: 4 pages, 4 figures, to appear in PR

    Nonlinear Transport of Bose-Einstein Condensates Through Waveguides with Disorder

    Get PDF
    We study the coherent flow of a guided Bose-Einstein condensate incident over a disordered region of length L. We introduce a model of disordered potential that originates from magnetic fluctuations inherent to microfabricated guides. This model allows for analytical and numerical studies of realistic transport experiments. The repulsive interaction among the condensate atoms in the beam induces different transport regimes. Below some critical interaction (or for sufficiently small L) a stationary flow is observed. In this regime, the transmission decreases exponentially with L. For strong interaction (or large L), the system displays a transition towards a time dependent flow with an algebraic decay of the time averaged transmission.Comment: 15 pages, 9 figure
    • …
    corecore